Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 91(3): e23737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450862

RESUMO

Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.


Assuntos
Vesículas Extracelulares , Genisteína , Sulfonamidas , Tiazolidinas , Feminino , Animais , Camundongos , Genisteína/farmacologia , Células da Granulosa , Clatrina , Mamíferos
2.
Reprod Med Biol ; 22(1): e12538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638351

RESUMO

Background: Development of ovarian follicles is regulated by a complex interaction of intra- and extra-follicular signals. Oocyte-derived paracrine factors (ODPFs) play a central role in this process in cooperation with other signals. Methods: This review provides an overview of the recent advances in our understanding of the paracrine regulation of antral follicle development in mammals. It specifically focuses on the regulation of granulosa cell development by ODPFs, along with other intrafollicular signals. Main Findings: Bi-directional communication between oocytes and surrounding cumulus cells is a fundamental mechanism that determines cumulus cell differentiation. Along with estrogen, ODPFs promote the expression of forkhead box L2, a critical transcription factor required for mural granulosa cells. Follicle-stimulating hormone (FSH) facilitates these processes by stimulating estrogen production in mural granulosa cells. Conclusion: Cooperative interactions among ODPFs, FSH, and estrogen are critical in determining the fate of cumulus and mural granulosa cells, as well as the development of oocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...